2014-01-16

Updates to SCUBA2_CHECK_CAL: 2-component fitting

Happy New Year to everyone reading this (or Hau‛oli Makahiki Hou as we say in Hawai‛i), and welcome to 2014.

The PICARD recipe SCUBA2_CHECK_CAL has been updated to use a two-component gaussian profile to fit the beam when determining an FCF from a calibration observation, as long as the signal-to-noise ratio exceeds 100. Previously, a single-component fit was used which was not constrained to be a gaussian. (If the signal-to-noise ratio is not high enough it will fall back on the old behavior.) This two-component fit is based on the FWHM and relative amplitudes of the two components derived in Dempsey et al. (2013).

This change has no effect on the ARCSEC FCFs, but results in a small (~1%) but consistent reduction in the BEAM FCFs. The effect should be small enough to be negligible, and with this change we now have slightly higher confidence in the resulting FCFs than with the old one-component fits. BEAMMATCH FCFs are likewise unaffected by the change, as testing showed they were best fit with profiles not forced to be gaussian.

You can set the behavior of SCUB2_CHECK_CAL manually using the FIT_GAUSSIAN parameter in your config file. The default value of 2 uses a two-component gaussian fit (when S/N > 100), a value of 1 uses a one-component gaussian fit, and a value of 0 recovers the old behavior of a one-component fit not constrained to be a gaussian.

At the moment, to use this feature you will need to update your Starlink to the current development version. Linux users can simply rsync Starlink from JAC following the instructions at http://starlink.jach.hawaii.edu/starlink/rsyncStarlink

No comments: